50 mm Diameter Absolute Single-Turn Rotary
 EP50 Series
 INSTRUCTION MANUAL
 TCD210034AB
 Aułonics

Thank you for choosing our Autonics product.
ead and understand instruction manual and manual thoroughly befor sing the product.
or your safety, read and follow the considerations written in the instruction manual, other manuals and Autonics website.
The specifications, dimensions, etc. are subject to chan find easily
The specifications, dimensions, etc. are subbect to change without notice for product Follow Autonics website for the latest information.

Safety Considerations

- Observe all 'Safety Considerations' for safe and proper operation to avoid hazards, - \triangle symbol indicates caution due to special circumstances in which hazards may occur.
\triangle Warning Failure to follow instructions may result in serious injury or death.

1. Fail-safe device must be installed when using the unit with machinery that May cause serious injury or substantialeconomic loss. (e.g. nuctear power control, medical equipment, ships, vehicles, railways, aircraft, combustio
apparatus, safety equip
2. Daiuret tof follow this instruction may result the personal injury, economic loss or fire. 2. Do not use the unit in the place where flammable / explosive / corrosive gas,
high humidity, direct sunlight, radiant heat, vibration, impact or salinity
may be present.
3. Install on a device panel to use

Failure to follow this isstruction may result in fire.
04. Do not connect, repair, or inspect the unit while connected to a power
source.
source.
Failureto follow this instruction may result in fire.
05. Check 'Connections' before wiring.
06. Donot disassemble or modify the unit.
\triangle Caution Failure to follow instructions may result in injury or product damage.

1. Use the unit within the rated speciifications.
2. Do not shortthe load. 03. Do not use the unit near
3. Do not use the unit near the place where there is the equipment which
generates strong magnetic force or high frequency noise and strong alkaline, strong acidic exists.
Failureto followhtis intsumtion

Cautions during Use

- Follow instructions in 'Cautions during Use'.
Otherwise, It may cause unexpected accidents.

 pherevt inductive noise i
Check the wiretype and response frequency when extending wire because of
- ditotion between lines.
- This unit mays be used in the following environments. ${ }^{-1 / 2}$. ${ }^{\text {doors }}$ (in the environment condition rated in ispecifications')
-Adtoortse max 2.,000 m
-Polution degree 2
Pellution degree 2
Installation category |l

Cautions during Installation

-Install the unit correctly with the usage environment, location, and the designated

- specifications.

Do not put strong impact when inserta coupling into shaft.
Failure to follow this instruction may result
Failure to follow this instruction may result in product damage.
When fixing the product or coupling with a wrench, tighten under 0.15 N m .
IIthe coupling error (parallel misalignment, angular misalignment) between the shaft
increases while installation, the life cycle of the coupling and the encoder can be shorten.
notapdytensile strength over 30 N to the cable

Ordering Information

This is only for reference, the actual prod cut does not supportall combination
For selecting the specified model, follow the Autonics website.

© Rotating direction
: Increase outputwhen the rotating
the shaft
R: Increase output when the rotating
counter-clockwise base
facing the shaft

Product Components					
- Product - Instruction manual			- Bolt $\times 8$ - Coupling $\times 1$ - Bracket $\times 2$		
Connections					
- Unused wires must be insulated. - The metal case and shield cable of encoders must be grounded (F.G.). - F.G. (Frame Ground) must be grounded separately. - Since exclusive driver IC is used for output circuit, be aware of short circuits when wiring each output wires. - N•C: not connected					
■ BCD code			■ Binary / Gray code		
Color	Function	Refer	Color	Function	Refer
White	+V		White	+V	
Black	GND	Power	Black	GND	Pow
Brown	2°		Brown	2^{0}	
Red	2^{1}		Red	2^{1}	
Orange	2^{2}		Orange	2^{2}	
Vellow	2^{3}		Vellow	2^{3}	
Blue	$2^{0} \times 10$		Blue	2^{4}	
Purple	$2^{2} \times 10$		Purple	2^{5}	
Gray	$2^{2} \times 10$		Gray	2^{6}	
White/ $/$ Brown	$2^{3} \times 10$	TP1 (≤ 40 division)	White/ Brown	2^{7}	$\begin{aligned} & \text { TP1 }\left(\leq 4 \text { division }^{2}\right) \end{aligned}$
White/ Red	$2^{0} \times 10^{2}$	$\underset{(\leq 40 \text { division })}{\text { TP2 }}$	White/ Red	2^{8}	TP2 (≤ 40 division)
White/ Orange	$2^{2} \times 10^{2}$	$\underset{\text { (} \leq 40 \text { division) }}{ }$	White/ Orange	2^{9}	$\begin{aligned} & \mathrm{EP} \\ & (\leq 40 \text { division }) \end{aligned}$
White/vellow	$2^{2} \times 10^{2}$		White/ Yellow	N.C	
White/Blue	$2^{3} \times 10^{2}$		White/ Blue	N.C	
White/Purple	$2^{0} \times 10^{3}$		White/Purple	N.C	
Shield	F.G.	Signal shield	Shield	F.G.	Signal shield

Inner Circuit

- The output circuitisidentical for each output bit.
- Be aware of fircuit break in case of overload or short beyond the specifications.

Output Waveform

- Following waveform is based on the positive logic.
(ln case of negative logic, the waveform is opposite to corresponding waveform.)

■ Binary code output \qquad \square Gray code output
$2^{2} \square \square \Gamma \times \times \Omega \Omega$ 2^{2} 15 $4 \times X \Perp ム$
 $x \times x$
$\times \times x$ $x \cdot x-1$

Output Phase / Output Angle			
- TP = Timing Pulse - TS = Signal Pulse - EP = Even Parity			
Resolution	BCD code	Binary code	Gray code
1024	TS: $0.35155^{\circ} \pm 15^{\prime}(13 \mathrm{bit})$	TS: $0.35155^{\circ} \pm 15^{\prime}(10$ bit)	Ts: $0.703^{\circ} \pm 15^{\text {(10 }}$ (10 bit)
720	Ts: $0.5{ }^{\circ} \pm 25^{\prime}$ (11 bit)	Ts: $0.5{ }^{\circ} \pm 25^{\prime}\left(10 b^{\text {itit }}\right.$	TS: $1^{1} \pm 25^{\text {(1) }} 10$ bit)
512	TS: $0.703^{\circ} \pm 15^{\prime}\left(11 b^{\text {bit }}\right.$)	Ts: $0.703^{\circ} \pm 15^{\prime}(9 \mathrm{bb}$ it	TS: $1.406^{\circ} \pm 15^{\prime}(9 \mathrm{bbit)}$
360	TS: $1^{1} \pm 25{ }^{\text {c }}$ (10 bit)	TS: $1^{\circ} \pm 25^{\prime}(9 \mathrm{bit})$	TS: $2^{\circ} \pm 25^{\prime}\left(9 \mathrm{~b}^{\text {it }}\right.$
256	TS: $1.400^{\circ} \pm 15^{\prime}(10$ bit)	TS: $1.400^{\circ} \pm 15^{\prime}(8$ bit)	TS:281250 $\pm 15^{\prime}(8 \mathrm{~b}$ it)
180	TS: $2^{2} \pm 25^{\prime}(9$ bit)	TS: $2^{2} \pm 25^{\prime}(8$ bit)	TS:4 $4^{\text {a }} 25^{\prime}$ (8 b it)
128	TS:2.81215 $\pm 15^{\prime}(9$ bit)	TS:2.812150 $\pm 15^{\prime}(7 \mathrm{~b}$ bit)	TS:5.625 $\pm 15^{\prime}$ (7bit)
90	TS:4* $4^{\circ} 5^{\prime}(8$ bit)	TS:4 $4^{\circ} \pm 25^{\prime}(7 \mathrm{bjit})$	TS: $8^{\circ} \pm 25^{\prime \prime}$ (7 7 it)
64	TS: $5.5 .65^{\circ} \pm 15^{\prime}$ (7 bit)	TS:5.5.25 $\pm 15^{\prime}(6 \mathrm{~b}$ ti)	TS: $11.25^{\circ} \pm 15^{\prime}(6 \mathrm{bit)}$
48	TS: $7.55^{\circ} \pm 25^{\prime}(7 \mathrm{bitit})$	TS.7.75 $\pm 25^{\prime}(6$ bit)	TS: $15^{\circ} \pm 25^{\prime}(6 \mathrm{bit})$
45		TS: $8^{8} \pm 25^{\prime}(6 \mathrm{bit})$	TS: $16^{\circ} \pm 25^{\prime}(6 \mathrm{bit})$
40			 EP: $9^{\circ} \pm 60^{\prime}(1 \mathrm{bit})$
32			
24	EP: $15^{\circ} \pm 60^{\prime}\left(1\right.$ bit $^{\prime 2}$		Ep: $15^{\circ} \pm 60^{\prime}(1$ bit
20			
16	TPI: $15^{\circ} \pm 60^{\prime}(1$ bit) TP2:2 $2^{\circ} \pm 60^{\prime}(1$ bit) TS:22.50 $\pm 60^{\prime \prime}$ (5 bit)	TP1: $15^{\circ} \pm 60^{\prime}$ (1 bit TS: $22.5^{\circ} \pm 60^{\prime}$ (4 bit EP: $22.5^{\circ} \pm 60^{\prime}(1 \mathrm{bit})$	TP1: $15^{\circ} \pm 60^{\prime}(1 \mathrm{bit})$ TP2: $2^{\circ} \pm 60^{\prime}$ (1 bit) TS: $\mathbf{4 5}^{\circ} \pm 60^{\circ}(4$ bit) EP $225^{\circ}+60^{\circ}(1 \mathrm{bi}$ 60 (1 bi
12			
10	EP: $36^{\circ} \pm 60^{\prime \prime} 11$ bit	TS: $13^{\circ} \pm 60^{\circ}(4$ bit $)$: $36^{\circ} \pm 60$ (1	TP1: $30^{\circ} \pm 60^{\prime}(1$ bit $)$ $T P 2: 12^{\circ}+60^{\prime}(1$ bit $)$ TP2:120 $\pm 60^{\circ}(1$ bitt $)$ EP: $36^{\circ} \pm 60^{\prime}(1$ bit)
8		TP1: $39^{\circ} \pm 60^{\prime}(1 \mathrm{bit}$ TP2: $15^{\circ} \pm 60^{\prime}$ (1 bit) TS: $45^{\circ} \pm 60^{\prime}(3 \mathrm{bit})$ EP: $45^{\circ} \pm 60^{\prime}(1 \mathrm{bit})$	TP1:39 $\pm 60^{\prime}$ (1 bit) P2: $15^{\circ} \pm 60^{\prime}(1 \mathrm{bit})$ TS: $90^{\circ} \pm 60^{\prime}(3 \mathrm{bit})$ EP: $45^{\circ} \pm 60^{\prime}(1 \mathrm{bit})$
6			

Dimensions

- Unit: mm, For the detailed drawings, follow the Autonics website

